x
Učitavanje

Pojmovnik

Povećanje slova
Smanjenje slova
Početna veličina slova Početna veličina slova
Visoki kontrast
a Promjena slova
  • Verdana
  • Georgia
  • Dyslexic
  • Početni
Upute za korištenje
A

Algebarski zapis kompleksnog broja

Povratak

Zapis kompleksnog broja z = a + b i nazivamo algebarski zapis kompleksnog broja, gdje su a i b realni brojevi, a i imaginarna jedinica.

Apsolutna vrijednost kompleksnog broja

Povratak

Apsolutna vrijednost ili modul kompleksnog broja z = x + y i je realan broj

z = x 2 + y 2 .

I

Imaginarna jedinica

Povratak

Imaginarna jedinica i ima svojstvo da je i 2 = - 1 .

Imaginarni broj

Povratak

Imaginarni broj je broj oblika bi , gdje je b realni broj, a i imaginarna jedinica.

K

Kompleksni broj

Povratak

Kompleksni broj je broj oblika a + b i , gdje su a i b realni brojevi, a i imaginarna jedinica.

Broj a naziva se realni dio kompleksnog broja, a broj b imaginarni dio kompleksnog broja.

Konjugirano kompleksni broj

Povratak

Ako je z = a + b i, onda broj z ¯ = a - b i zovemo konjugirano kompleksnim brojem broja z . Simbol konjugiranja je crta iznad broja koji se konjugira.

M

Množenje kompleksnih brojeva

Povratak

Za dva kompleksna broja z 1 = x 1 + y 1 i te z 2 = x 2 + y 2 i vrijedi:

z 1 · z 2 = x 1 · x 2 - y 1 · y 2 + x 1 · y 2 + x 2 · y 1 i .

O

Oduzimanje kompleksnih brojeva

Povratak

Za dva kompleksna broja z 1 = x 1 + y 1 i te z 2 = x 2 + y 2 i vrijedi: z 1 - z 2 = x 1 - x 2 + y 1 - y 2 i .

P

Pridruživanje kompleksnog broja točki u kompleksnoj ravnini

Povratak

Pridruživanje

z = x + y i x , y  

je jednoznačno.

Svakom kompleksnom broju jednoznačno je pridružena točka i svakoj je točki jednoznačno pridružen kompleksni broj.

S

Svojstva modula

Povratak

Za kompleksne brojeve z , z 1 i z 2 vrijedi:

  1. modul umnoška: | z 1 · z 2 | = | z 1 | · | z 2 |
  2. modul potencije: z n = z n
  3. modul kvocijenta: z 1 z 2 = z 1 z 2 , gdje je z 2 0 .

Z

Zbrajanje kompleksnih brojeva

Povratak

Za dva kompleksna broja z 1 = x 1 + y 1 i te z 2 = x 2 + y 2 i vrijedi:

z 1 + z 2 = x 1 + x 2 + y 1 + y 2 i .