x
Učitavanje

4.1 Rad

Europska unija, Zajedno do fondova EU
Sadržaj jedinice
Povećanje slova
Smanjenje slova
Početna veličina slova Početna veličina slova
Visoki kontrast
a Promjena slova
  • Verdana
  • Georgia
  • Dyslexic
  • Početni
Upute za korištenje

Na početku...

Pokvaren automobil guramo dio puta. Dizalica na gradilištu podiže s tla betonsku gredu na visinu od 10 m . Motor automobila ubrzava automobil na cesti. Što je zajedničko svim tim primjerima? U svima netko ili nešto obavlja rad. Rad je pojam koji upotrebljavamo u svakodnevici, ali i u fizici.

Upoznajmo se pobliže sa značenjem pojma rada u fizici.

Rad

Zadržimo se za početak na prvom primjeru koji smo spomenuli. Pokvaren automobil guramo dio puta. Zbog čega ćemo reći da obavljamo rad na automobilu? Gurajući automobil svladavamo silu trenja između guma i podloge, a da bismo to mogli, moramo djelovati horizontalnom silom F . Gurajući automobil prelazimo udaljenost s .

Guranje pokvarenog automobila na putu s.

O čemu ovisi koliki je rad na automobilu koji ćemo obaviti guranjem? Očigledno, rad je veći što veću udaljenost prijeđemo gurajući automobil i što je veća sila koju moramo svladati.

Promotrimo drugi primjer iz uvoda. Dizalica na gradilištu podiže s tla betonsku gredu. Dizalica će obaviti veći rad na betonskoj gredi ako je veća sila koju mora svladati pri podizanju tereta (sila teža) i ako je veća udaljenost koju pritom napravi (visina na koju se blok podiže).

Rad, u situaciji u kojoj stalna sila djeluje na tijelo u smjeru pomaka, računamo kao umnožak iznosa sile i udaljenosti koja je prijeđena. Ako sila ne djeluje na tijelo u smjeru pomaka, uzimamo samo komponentu sile u smjeru gibanja tijela i množimo je s prijeđenom udaljenosti.

Sila i put vektorske su veličine, ali rad je skalarna veličina, tj. opisan je samo svojim iznosom.

W = F · s  

Mjerna jedinica jednaka je umnošku njutna i metra ​​ N m  i nazivamo je džul, J .

Ako su sila i put iste orijentacije, rad je pozitivan, a ako su suprotne orijentacije, rad je negativan. Pogledajmo to na primjeru dizača utega. Dizač leži na klupi i podiže uteg s prsa vertikalno uvis, svladavajući silu težu, a potom ga spušta. Kakva je orijentacija puta i sile u oba slučaja? Je li rad u oba slučaja pozitivan? Razmislite, a zatim svoje pretpostavke provjerite s pomoću sljedeće aktivnosti i računskog primjera.

Primjer 1.

  1. Koliki rad na utegu obavi sportaš prikazan u animaciji kada podigne uteg mase 60 kg pomaknuvši ga za 50 cm ?
  2. Koliki rad obavi sportaš spuštajući uteg na početnu visinu?

( g = 10 ms - 2 )

  1. Podizanje utega jednostavna je situacija. Kada podiže uteg, dizač svladava silu težu koja u ovome slučaju iznosi:

    F = m · g

    F = 60 kg · 10 ms - 2

    F = 600 N .

    Ako je pritom s = 0,5 m , rad koji je obavio iznosi:

    W = F · s

    W = 600 N · 0,5 m

    W = 300 J.

  2. Koliki rad obavi dizač kada spušta uteg? Ovdje dizač utega spušta uteg na početnu visinu. Put je po iznosu jednak kao u prvom primjeru, ali je suprotne orijentacije. Sila kojom djeluje dizač pri spuštanju utega ponovno je jednako orijentirana kao i prvi put. To je stoga što mi i pri spuštanju predmeta djelujemo protiv sile teže. Ako spuštate paket na tlo i ako u jednom trenutku prestanete djelovati silom, paket će početi slobodno padati.

    U toj situaciji sila i put međusobno su suprotno orijentirani pa će rad iznositi:

    W = - F · s

    W = - 300  J .


Koliki je ukupan rad koji je obavio dizač utega pri dizanju i spuštanju utega?

Iz dosadašnjeg razmatranja zaključujemo da iznosi: 

W = 300 J - 300 J  

W = 0 J.  

Očigledno se pojam rada u našem svakodnevnom govoru i u fizici ne podudara u potpunosti.

Zamislite sljedeću situaciju.

Na desni ste dlan naslagali udžbenike Fizike svih prijatelja iz razreda. Držite ih mirno na istoj visini 10 minuta. Na lijevi dlan stavite komadić krede i podignete je za 1 cm  uvis. Kojom ste rukom obavili veći rad? Očigledno lijevom. Rad obavljen desnom rukom iznosi 0 J jer se vaša ruka pri svladavanju sile teže, koja djeluje na sve udžbenike Fizike, nije pomaknula. Lijevom rukom obavljen je po iznosu mali rad, ali različit od 0 J .

Konzervativne i disipativne sile

Ako pri djelovanju neke sile rad ovisi samo o udaljenosti početne i završne točke putanje tijela u smjeru sile, tada tu silu nazivamo konzervativna sila. To su gravitacijska, elastična i električna (Coulombova) sila. Nasuprot tomu, svladavajući silu trenja dok guramo neki predmet, obavljamo rad cijelom putanjom koju prijeđemo (sila i put su uvijek na istom pravcu) pa rad osim o iznosu sile ovisi i o ukupno prijeđenom putu.

Silu trenja i ostale sile kod kojih rad ovisi o putu nazivamo disipativne sile.

Pri djelovanju konzervativnih i disipativnih sila rad možemo računati s pomoću poznatog izraza:

W = F · s,

s tim da s pri radu konzervativnih sila izražava udaljenost početne i završne točke putanje tijela i ne ovisi o ukupnom putu, a pri radu disipativnih sila s je ukupan prijeđeni put tijela.​

Rad je fizička veličina koja opisuje djelovanje sile F na tijelo, pri čemu se tijelo pomakne za s , a jednak je umnošku prijeđenog puta  s i komponente sile F , u smjeru gibanja tijela.

Riješimo sada dva zadatka.

Primjer 2.

Vučemo putnu torbu siom pod kutom u odnosu na horizontalno tlo.

Izrazite rad koji obavimo na putnoj torbi dok je vučemo kao na fotografiji ako prijeđemo put s , a kut između pravca na kojem djelujemo silom F  i horizontalne podloge iznosi:​

  1. 30 °  
  2. 45 °  
  3. 60 ° .

Dok vučemo putnu torbu po horizontalnoj podlozi, svladavamo silu trenja. Rad na torbi obavljamo samo horizontalnom komponentom sile F kojom vučemo torbu. Silu F možemo rastaviti na komponente kako smo učili u jedinici 2.1.

Uvrstimo li u izraz za rad horizontalnu komponentu F x, , dobijemo:

W = F x · s

  1. W = 3 2 · F · s

  2. W = 2 2 · F · s

  3. W = 1 2 · F · s.


Primjer 3.

U kojem smo primjeru, pri podizanju loptice od dna do vrha postolja, obavili najveći rad? Trenje zanemarujemo.

  1. u primjeru a
  2. u primjeru b
  3. u primjeru c
  4. u sva je tri primjera rad jednak.

Točan odgovor je 4.

U svim smo slučajevima svladavali jednaku silu, silu težu, koja djeluje na lopticu, a udaljenost početnog i završnog položaja tijela u smjeru u kojem smo djelovali pri svladavanju sile teže u svim je primjerima također jednaka jer je sila teža konzervativna sila.


Određivanje rada iz F , s dijagrama​

Na slici je F , dijagramom prikazano djelovanje stalne sile trenja iznosa 40  N,   pri čemu je tijelo prešlo put 10  m . Koliki je obavljeni rad?​

F, s dijagram
F, s dijagram

Rad možemo izračunati kao površinu pravokutnika čije su stranice 40 N i 10 m .

Rad će iznositi:

W = 40 N · 10 m  

W = 400 J.  

Općenito, rad možemo i pri djelovanju promjenjive sile izračunati kao površinu ispod krivulje u F , s dijagramu.

Rad sile promjenjivog iznosa

Ako se horizontalna komponenta F x  sile koja djeluje na tijelo mijenja, kako je prikazano na slikama, vidimo da iz dijagrama možemo približno izračunati koliki je rad obavljen tako da prijeđeni put podijelimo na manje dijelove. Zbrajajući pravokutnike iznad dijelova puta,  Δ s 1 ,   Δ s 2  itd., dobijemo ukupan rad obavljen dok se tijelo pomaknulo od početnog do konačnog položaja. Što su manji dijelovi na koje dijelimo put, približna vrijednost rada koju dobijemo tim načinom manje će odstupati od stvarne vrijednosti obavljenog rada.

Primjer 4.

F, s dijagram

Koliki rad obavi na tijelu sila F  čije je djelovanje na putu s  prikazano dijagramom?​ 

F, s dijagram - određivanje rada.

Rad ćemo izračunati kao površinu u F , s  dijagramu. Rad W 1  na prvih 6 metara iznosi:

W 1 = 20 N · 6 m

W 1 = 120 J.

Rad  W 2 na posljednja 4 metra iznosi:​

W 2 = 4 m · 20 N + 4 m · 10 N 2  

W 2 = 100 J.

Ukupan rad iznosi

W = W 1 + W 2  

W = 220 J.  


Kutak za znatiželjne

Promotrite kružnu i eliptičnu orbitu satelita oko Zemlje. U oba slučaja privlačna sila između Zemlje i satelita održava satelit u orbiti. Obavlja li ta sila rad tijekom ophoda satelita u kružnoj putanji? Obavlja li ga ako je satelit u eliptičnoj putanji?  ​

Povezani sadržaji

 Ponovite iz Matematike što znate o kružnici i elipsi.

...i na kraju

Govorili smo po čemu se razlikuje pojam rada u fizici i u svakodnevnom govoru te kako odrediti iznos fizičke veličine rada računski i grafički.
Provjerite koliko ste razumjeli rješavajući sljedeće zadatke.

PROCIJENITE SVOJE ZNANJE

1

U fizičkom smislu rad obavljamo kada (označi točne odgovore)

null
null
2

Dizalica prenosi zrakom teret mase 200 kg horizontalno na udaljenost 20 m od početnog položaja. Rad koji pritom obavi dizalica iznosi:

null
null
3

Saonice natovarene teretom vučemo djelujući prosječnom silom od 120 N pod kutom od 45 ° u odnosu na horizontalnu podlogu. Pritom smo prešli put od 45 m . Koliki smo rad  obavili?​

null
null
4

Podižemo s poda paket u dizalu koje se spušta stalnom brzinom. Rad koji pritom obavimo jest negativan.

null
null
5

Na tijelo je na putu dugom 20 m djelovala sila koja se jednoliko povećala od 0 N do 10 N . Ukupan obavljeni rad pritom iznosi:

null
null
ZAVRŠITE PROCJENU

Idemo na sljedeću jedinicu

4.2 Snaga